Math32: Contrôle terminal

Lundi 16 décembre - Durée 2h00

Questions de cours. (4 points)

Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. Soit λ une valeur propre de f. Soit E_{λ} l'espace propre associé à λ et soit N_{λ} l'espace caractéristique associé à cette même valeur propre.

- 1. Donner une définition de E_{λ} et une définition de N_{λ} .
- 2. Montrer que ces 2 sous-espaces sont stables par f.

Exercice 1. (6 points)

Soit $n \in \mathbb{N}$. Soit φ l'application de $\mathbb{R}_n[X]$ dans \mathbb{R} qui à un polynôme P associe le nombre $\varphi(P)$ défini par

$$\varphi(P) = \int_0^1 P(t)dt.$$

1. Montrer que φ est une forme linéaire sur $\mathbb{R}_n[X]$. Pour tout entier i compris entre 0 et n on définit sur $\mathbb{R}_n[X]$ les formes linéaires ψ_i par

$$\psi_i(P) = P(i/n).$$

- 2. Montrer que $\widetilde{\mathcal{B}} = (\psi_0, \psi_1, \cdots, \psi_n)$ forme une base de $\mathbb{R}_n[X]^*$.
- 3. En déduire qu'il existe des nombres réels $\lambda_0, \lambda_1, \cdots, \lambda_n$ tels que

$$\int_0^1 P(t)dt = \sum_{i=0}^n \lambda_i P(i/n),$$

pour tout polynôme P de $\mathbb{R}_n[X]$.

- 4. Pour n = 2, calculer λ_0 , λ_1 et λ_2 .
- 5. Déterminer la base \mathcal{B} de $\mathbb{R}_2[X]$ telle que la base duale de \mathcal{B} soit $\widetilde{\mathcal{B}}$.

Exercice 2.(12 points)

Soient $n \in \mathbb{N}$ et $a_0, \dots, a_{n-1} \in \mathbb{R}$, et soit C la matrice compagnon d'ordre n suivante

$$C = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}$$

Enfin soit f l'endomorphisme de \mathbb{R}^n dont C est la matrice associée dans la base canonique.

1. Montrer que le polynôme caractéristique de f est au signe près

$$X^n - \sum_{i=0}^{n-1} a_i X^i.$$

- 2. Montrer que si λ est une valeur propre de f alors le rang de la matrice $C \lambda I$ est n 1.
- 3. En déduire que si λ est une valeur propre de f alors la dimension de l'espace propre associée est 1.
- 4. En déduire que f est diagonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{R} et s'il n'a que des racines simples.

On pose pour la suite n = 3, $a_2 = 11$, $a_1 = -39$ et $a_0 = 45$.

- 5. En utilisant que 3 est une valeur propre de f factoriser le polynôme caractéristique de f.
- 6. En déduire si f est diagonalisable et si f est trigonalisable.
- 7. Calculer les projecteurs spectraux de f.
- 8. Soit $k \in \mathbb{N}$. Calculer C^k .
- 9. Résoudre dans \mathbb{R}^3 le système différentiel

$$\begin{cases} \dot{x} = 0x + 1y + 0z \\ \dot{y} = 0x + 0y + 1z \\ \dot{z} = 45x - 39y + 11z \end{cases}$$